With the introduction of the PSoC 4 High Voltage Precision Analog (HVPA)-144K microcontroller, Infineon Technologies addresses the automotive battery management sector by integrating high-precision analog and high-voltage subsystems on a single chip. It provides a fully integrated embedded system for monitoring and managing automotive 12 V lead-acid batteries, which is critical for the 12 V power supply of vehicles' electrical systems. The new microcontroller is ISO26262 compliant, enabling compact and safe intelligent battery sensing and battery management in modern vehicles.
The PSoC 4 HVPA-144K’s dual high-resolution sigma-delta ADCs, together with four digital filtering channels, enable accurate measurement of the battery’s state-of-charge (SoC) and state-of-health (SoH) by measuring key parameters such as voltage, current, and temperature with an accuracy of up to ±0.1 percent. The device features two programmable gain amplifiers (PGAs) with automatic gain control, allowing fully autonomous control of the analog front end without software intervention. The use of shunt-based current sensing for batteries provides a higher accuracy than conventional Hall sensors.
An integrated 12 V LDO (42 V tolerant) allows the device to be supplied directly from the 12 V lead-acid battery without the need for an external power supply. An integrated transceiver allows direct communication with the LIN bus. The product meets the functional safety requirements of ASIL-C according to ISO26262.
The Arm® Cortex®-M0+ MCU on which the PSoC 4 HVPA-144K is based operates at up to 48 MHz with up to 128KB of code flash, 8KB of data flash and 8KB of SRAM, all with ECC. The PSoC 4 HVPA-144K also includes digital peripherals such as four timers/counters/PWMs and a serial communication block that can be configured as an I2C/SPI/UART (more info).